AP® CHEMISTRY 2010 SCORING GUIDELINES

Question 3 (9 points)

$$8 \text{ H}^+(aq) + 4 \text{ Cl}^-(aq) + \text{MnO}_4^-(aq) \rightarrow 2 \text{ Cl}_2(g) + \text{Mn}^{3+}(aq) + 4 \text{ H}_2\text{O}(l)$$

 $Cl_2(g)$ can be generated in the laboratory by reacting potassium permanganate with an acidified solution of sodium chloride. The net-ionic equation for the reaction is given above.

- (a) A 25.00 mL sample of 0.250 M NaCl reacts completely with excess KMnO₄(aq). The Cl₂(g) produced is dried and stored in a sealed container. At 22°C the pressure of the Cl₂(g) in the container is 0.950 atm.
 - (i) Calculate the number of moles of $Cl^{-}(aq)$ present before any reaction occurs.

mol Cl⁻ =
$$(0.02500 \text{ L})(0.250 \text{ M}) = 6.25 \times 10^{-3} \text{ mol}$$
 One point is earned for the correct numerical value.

(ii) Calculate the volume, in L, of the $Cl_2(g)$ in the sealed container.

mol Cl₂ =
$$\frac{\text{mol Cl}^{-}}{2}$$
 = $\frac{6.25 \times 10^{-3} \text{ mol}}{2}$ = $3.125 \times 10^{-3} \text{ mol Cl}_2$ One point is earned for the correct number of moles of Cl₂ based on stoichiometry.

$$V = \frac{nRT}{P} = \frac{\left(3.125 \times 10^{-3} \text{ mol Cl}_2\right)\left(0.0821 \text{ L atm mol}^{-1} \text{ K}^{-1}\right)(295 \text{ K})}{0.950 \text{ atm}}$$
One point is earned for the correct number of moles of Cl₂ based on stoichiometry.

One point is earned for substitution into ideal gas law and correct numerical result.

An initial-rate study was performed on the reaction system. Data for the experiment are given in the table below.

Trial	[Cl ⁻]	[MnO ₄ ⁻]	$[\mathrm{H}^+]$	Rate of Disappearance of MnO_4^- in Ms^{-1}
1	0.0104	0.00400	3.00	2.25×10^{-8}
2	0.0312	0.00400	3.00	2.03×10^{-7}
3	0.0312	0.00200	3.00	1.02×10^{-7}

AP® CHEMISTRY 2010 SCORING GUIDELINES

Question 3 (continued)

- (b) Using the information in the table, determine the order of the reaction with respect to each of the following. Justify your answers.
 - (i) Cl⁻

The reaction is second order. Tripling [Cl $^-$] between trials 1 and 2 with no change in [MnO $_4$ $^-$] results in a nine-fold increase in the rate:

$$\left(\frac{0.0312 \ M}{0.0104 \ M}\right)^{x} = \frac{2.03 \times 10^{-7}}{2.25 \times 10^{-8}}$$
$$3^{x} = 9$$
$$x = 2$$

Thus the order of the reaction must be 2 with respect to Cl⁻.

One point is earned for the correct order of reaction with justification.

(ii) MnO₄

The reaction is first order. Doubling [MnO₄ $^-$] between trials 3 and 2 with no change in [Cl $^-$] results in a doubling of the rate:

$$\left(\frac{0.00400 M}{0.00200 M}\right)^{y} = \frac{2.03 \times 10^{-7}}{1.02 \times 10^{-7}}$$
$$2^{y} = 2$$
$$y = 1$$

Thus the order of the reaction must be 1 with respect to MnO₄⁻.

One point is earned for the correct order of reaction with justification.

- (c) The reaction is known to be third order with respect to H⁺. Using this information and your answers to part (b) above, complete both of the following:
 - (i) Write the rate law for the reaction.

rate = $k[Cl^-]^2[MnO_4^-][H^+]^3$

One point is earned for the correct rate law.

AP® CHEMISTRY 2010 SCORING GUIDELINES

Question 3 (continued)

(ii) Calculate the value of the rate constant, k, for the reaction, including appropriate units.

Using data from trial 1:

$$2.25 \times 10^{-8} M \text{ s}^{-1} = k(0.0104 M)^2 (0.00400 M)(3.00 M)^3$$

$$k = 1.93 \times 10^{-3} M^{-5} \text{s}^{-1}$$

One point is earned for the correct numerical result.

One point is earned for the correct units.

(d) Is it likely that the reaction occurs in a single elementary step? Justify your answer.

It is not likely that the reaction occurs in a single step because the orders of the reaction with respect to the reactants do not correspond to the coefficients in the balanced equation

OR

It is not likely that the reaction occurs in a single step because the reaction requires the collision of many (13) reactant particles and the frequency of a 13-particle collision is negligible. One point is earned for the correct answer with justification.