AP ${ }^{\oplus}$ CHEMISTRY 2009 SCORING GUIDELINES (Form B)

Question 2 (8 points)

$$
\mathrm{S}_{2} \mathrm{O}_{3}^{2-}(a q) \xrightarrow{\mathrm{H}^{+}} \mathrm{SO}_{3}^{2-}(a q)+\mathrm{S}(s)
$$

A student performed an experiment to investigate the decomposition of sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, in acidic solution, as represented by the equation above. In each trial the student mixed a different concentration of sodium thiosulfate with hydrochloric acid at constant temperature and determined the rate of disappearance of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})$. Data from five trials are given below in the table on the left and are plotted in the graph on the right.

Trial	Initial Concentration of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})$ (M)	Initial Rate of Disappearance of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})$ $\left(\mathrm{M} \mathrm{s}^{-1}\right)$
1	0.050	0.020
2	0.075	0.030
3	0.088	0.034
4	0.112	0.045
5	0.125	0.051

(a) Identify the independent variable in the experiment.

The initial concentration of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(a q)$	One point is earned for the correct answer.

(b) Determine the order of the reaction with respect to $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$. Justify your answer by using the information above.

Using trials 1 and 2:

$$
\begin{aligned}
& \frac{\operatorname{rate}_{2}}{\operatorname{rate}_{1}}=\frac{k_{2}\left[\mathrm{~S}_{2} \mathrm{O}_{3}^{2-}\right]^{m_{2}}}{k_{1}\left[\mathrm{~S}_{2} \mathrm{O}_{3}^{2-}\right]^{m_{1}}} \\
& \frac{0.030 M s^{-1}}{0.020 M s^{-1}}=\frac{[0.075]^{m}}{[0.050]^{m}}
\end{aligned}
$$

$1.5=(1.5)^{m}$, so $m=1$ and the reaction is first order with respect to $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$.

One point is earned for the correct order.

Note: Other correct justifications are acceptable.

One point is earned for a correct justification.

AP ${ }^{\circledR}$ CHEMISTRY
 2009 SCORING GUIDELINES (Form B)

Question 2 (continued)

(c) Determine the value of the rate constant, k, for the reaction. Include units in your answer. Show how you arrived at your answer.

$$
\text { rate }=k\left[\mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}\right] \Rightarrow k=\frac{\text { rate }}{\left[\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}\right]}
$$

Using the data from trial $1, k=\frac{0.020 M^{-1}}{0.050 M}=\mathbf{0 . 4 0} \mathbf{s}^{\mathbf{- 1}}$
OR
the rate constant is equal to the slope of the line
One point is earned for the correct units.
$k=\frac{(0.052-0.020) M s^{-1}}{(0.13-0.05) M}=\frac{0.032 M^{-1}}{0.08 M}=\mathbf{0 . 4 0} \mathbf{s}^{-1}$
(d) In another trial the student mixed $0.10 \mathrm{M}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ with hydrochloric acid. Calculate the amount of time it would take for the concentration of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ to drop to 0.020 M .

$$
\begin{array}{l|}
\ln [\mathrm{A}]_{t}-\ln [\mathrm{A}]_{0}=-k t \Rightarrow \ln \frac{[\mathrm{~A}]_{t}}{[\mathrm{~A}]_{0}}=-k t \\
\ln \frac{\left[\mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}\right]_{t}}{\left[\mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}\right]_{0}}=-k t \\
\ln \frac{0.020}{0.10}=\left(-0.40 \mathrm{~s}^{-1}\right)(t) \Rightarrow t=\frac{-1.61}{-0.40 \mathrm{~s}^{-1}}=4.0 \mathrm{~s}
\end{array} \begin{gathered}
\text { One point is earned } \\
\text { for the correct setup. }
\end{gathered} \quad \begin{aligned}
& \text { One point is earned for } \\
& \text { the correct answer with units. }
\end{aligned}
$$

(e) On the graph above, sketch the line that shows the results that would be expected if the student repeated the five trials at a temperature lower than that during the first set of trials.

The line drawn should start on the y-axis at a lower point than the line already plotted and should have a One point is earned for an acceptable line. less steep slope.

